
be 2 a wi

ASE
al

i2

IRE£1 Aus $195 NZ $2.25 SA R195

&

: | se :

DUCKS & DROIDS A new series begins seal le
on robotics, this week tracing its eo 607 ei Lb oe - on

developmentfromthemechanical review the market leaders
inventions of the 18thcentury 2 [peated afte

@ Our robotics series moves

on to consider feedback _
control in robot movement —

LIGHT WORK Ep son's PX-8 iS a : how does a robot follow the

-competitively-priced lap-held computer 609 | Straight and narrow? :

INVASION FORCE As well as being a
successful game, Space Invaders brought
computing to the public’s attention

REPEAT PERFORMANCE We learn
how LoGo employs the principle of
recursion to produce complex designs from
simple commands |

FILTER TO FLOATING POINT
A weekly glossary of computing terms

ROUTINE CHECK UP We suggest ways
of testing your completed programs

PROGRAMMING PROJECTS

USEFUL POINTERS We conclude our
look at user-defined characters by 61 6 |
discussing ways of improving the programs

00000000

Ree
RE

[00000000]
me Bio
Og be rove Bas ae oe ao By a Ks

Editor Mike Wesley; Art Director David Whelan; Technical Editor Brian Morris; Production Editor Catherine
Cardwell; Art Editor Claudia Zeff; Chief Sub Editor Robert Pickering; Designer Julian Dorr; Art Assistant Liz
Dixon; Editorial Assistant Stephen Malone; Sub Editor Steve Mann; Researcher Melanie Davis; Staff Writer
Steve Colwill; Contributors Geoff Bains, Harvey Mellor, Mike Curtis, Steve Colwill, Chris Naylor, Graham
Storrs; Software Consultants Pilot Software City; Group Art Director Perry Neville; Managing Director Stephen
England; Published by Orbis Publishing Ltd: Editorial Director Brian Innes; Project Development Peter
Brookesmith; Executive Editors Chris Cooper, Maurice Geller; Production Controller Peter Taylor-
Medhurst; Circulation Director David Breed; Marketing Director Michael Joyce; Designed and produced by
Bunch Partworks Ltd; Editorial Office 14 Rathbone Place, London W1P 1DE; © APSIF Copenhagen 1984; © Orbis
Publishing Ltd 1984: Typeset by Universe; Reproduction by Mullis Morgan Ltd; Printed in Great Britain by Artisan
Press Ltd, Leicester

HOME COMPUTER ADVANCED COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50
USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER ADVANCED COURSE - Copies are obtainable by placing a regular
order at your newsagent, or by taking out a subscription. Subscription rates: for six months (26 issues) £23.80:
for one year (52 issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street,
Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.
Back Numbers UK and Eire — Back numbers are obtainable from your newsagent or from HOME COMPUTER
ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover
price. AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers,
Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW
ZEALAND, EUROPE & MALTA: Back numbers are available at cover price from your newsagent. In case of difficulty
write to the address in your country given for binders. South African readers should add sales tax.
How to obtain binders for HOME COMPUTER ADVANCED COURSE — UK and Eire: Please send £3.95 per binder if you
do not wish to take advantage of our special offer detailed in Issues 5, 6 and 7. EUROPE: Write with remittance of
£5.00 per binder (incl. p&p) payable to Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT.
MALTA: Binders are obtainable through your local newsagent price £3.95. In case of difficulty write to HOME
COMPUTER ADVANCED COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli Street, Valletta, Malta. AUSTRALIA:
For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED
COURSE BINDERS, First Post Pty Ltd, 23 Chandos Street, St. Leonards, NSW 2065. The binders supplied are
those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from
HOME COMPUTER ADVANCED COURSE BINDERS, Gordon & Gotch (NZ) Ltd, PO Box 1595, Wellington. SOUTH
AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME
COMPUTER ADVANCED COURSE BINDERS, Intermag, PO Box 57394, Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to
keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at
any time when circumstances dictate. Binders depicted in this publication are those produced for the UK market
only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be
Subject to import duty and/or local taxes, which are not included in the above prices unless stated.

MATCH-MAKING Our course for the |
6809 continues with a look at machine code 61 8
calls to subroutines © :

DUAL CONTROL Using the two boxes
that we have built in previous weeks, we 61 2
control the movement of a Lego car
powered by two motors |

REFERENCE CARD A valuable “INSIDE
reference card that complements the BACK
machine code course COVER

wy

DUCKS & |
~DROIDS —

Machines created in the image of man that
can perform human tasks have long
fascinated engineers and writers alike. We
begin a series of articles that explore the
science of robotics, starting here with a look
at past attempts to build such machines,
from the mechanical inventions of the 18th

century to present day industrial robots.

For hundreds of years, many people have been
attracted to the idea of mechanical men in one
form or another. Philosophers, engineers and
inventors have set their minds to creating
machines that mimic human behaviour. Although
robots are nowadays less likely to look like humans
and are designed to perform a specific range of
actions, the earliest mechanical men were
designed to look as lifelike as possible and suggest
that they could be capable of any human action.

The first mechanical robot, however, wasn’t —
given the form of a man. In 1738, Jacques de
Vaucanson (1709-1782), a French engineer,
presented a mechanical duck to the Académie
Royale des Sciences in Paris. The duck was able to
flap its wings, quack and eat food. Later in the 18th
century, a Swiss inventor, Pierre Jacquet-Droz
(1721-1790), created a set of mechanical puppets
that could perform a variety of actions. One could
write, one was able to draw figures, and another
played music on an organ. By the end of the 19th
century there were large numbers of such

machines in existence, all based on clockwork

mechanisms. | :
In the Victorian era, numerous figures were

constructed that were remarkably lifelike, and not
all of these were based on clockwork. In 1893,
George Moore built a mechanical man that relied
on steam power as its motivating force — an
interesting side-effect of which was to enable the
mechanical man to puff a cigar and appear to
exhale smoke. 7 ; :

Newer technologies have stimulated the
development of more ambitious machines: from
the simple mechanical men constructed out of
Meccano sets that are capable of walking across
the floor, to the classic ‘Elektro’ man, built by the
American company, Westinghouse. ‘Elektro’ was
a seven foot tall (2.15 metres) mechanical man that
could speak up to 80 different words, count, walk,
talk, salute and distinguish between different
colours. He was powered by no less than 11
electric motors and weighed 117 kgs (260 lbs).
Controlling this huge bulk was a ‘brain’ that
consisted of a total of 82 different relays.
But each of these mechanical men had its

ROBOTICS/APPLICATION (..- > /

you might want when you think of your ideal

robot. A mechanical man that can draw figures

will not do the shopping for you, and a mechanical

man that can walk across the room will be unlikely

to get even as far as the shops without walking into

limitations. None of them, despite their obvious

entertainment value, had any of the capabilities.

THE KOBAL COLLECTION

Robot Roots
Fritz Lang’s 1926 science fiction
classic ‘Metropolis’ influenced
film-makers and audiences for
decades, not least in crystallising
vague contemporary images of
progress and industry in The
Machine, the first cinema robot star .

THE HOME COMPUTER ADVANCED COURSE 601

Fact And Fiction
The most famous robots on
television must be the Daleks.
These are really armoured
personnel carriers, controlled by
their creators riding inside.

Robbie The Robot from the film
‘Forbidden Pianet’, epitomises the
caring, sensitive robot of
anthropomorphic legend.

Topo, Prism’s now-
discontinued household robot, was
a half-serious attempt to introduce

-robotics into the home

602 THE HOME COMPUTER ADVANCED COURSE

/ APPLICATION/ROBOTICS

a lamppost. Each of these mechanical men was
very definitely a machine — they typically
performed a limited range of actions that required
no decisions to be made, and did not appear to
embody any kind of intelligence.

ROBOTS IN FICTION
But if the inventors and engineers were stuck for
ideas, the writers of fiction certainly didn’t feel
these creative restrictions. Science fiction has
thrived on the idea of robots. In fact, the very word
robot is the product of a fictional work. In 1923,
the Czech playwright, Karel Capek (1789- 1938)
wrote a play called R.U.R. — the title was an
abbreviation for Rossum’s Universal Robots. The
play was about the invention of mechanical men
so perfect that they could carry out all of the tasks a
human might perform. Eventually, the robots
found that they had no use for men at all, which left
the humans in a rather precarious position. In
Czech, the word robotasimply means ‘worker’. So,
the title of Capek’s play should have been
translated as ‘Rossum’s Universal Workers’ but,
somehow, the word ‘robot’ caught on, and this has
since become the standard term for any
mechanical man with human capabilities.
Fictional fantasies about creatures constructed

to resemble human beings go back to Mary
Shelley’s well-known Gothic novel, Frankenstein
(1818). Although it was not mechanical, the
monster created by Victor Frankenstein was
constructed from a set of parts, even though these
were obtained by the rather gruesome process of
raiding graveyards. The invading creatures in
H.G. Wells’ The War Of The Worlds (1898) were,
at least in part, robotic.

Novelists of the 20th century, however, have
explored in immense detail a fictional world
inhabited by robots. The most notable
contribution has been that of Isaac Asimov, the
celebrated science fiction writer who began his
career in 1940 writing short stories about robots

The Daleks

Robbie The Robot

and their imagined operational problems. So
complete is Asimov's visionary robotic world that
he has even formulated the three Laws of
Robotics. According to Asimov, the Laws are
contained in the Handbook Of Robotics (56th
Fdition, 2058 AD). Clearly, he was allowing a
very reasonable timescale before robots become
commonplace.

In the cinema and on television, robots have
also made their fictional mark. The television
series Dr Who is densely populated with Daleks
and Cybermen, and in the Star Wars films C3PO
-and R2D2 are the equals of their human co-stars.

In comparison with these flights of fantasy, the
present day use of robots seems quite mundane.
The industrial robots found on car assembly lines
receive most of the attention nowadays. It is
estimated that by 1985 there will be 25,000 robots
in use in Japanese industry, 15,000 in the USA and
8,000 in West Germany. Britain’s robot
population is among the smallest of any industrial
nation. By 1985, only 1,500 robots are expected to
be in operation. Expansion of the European
market for industrial robots is expected to
continue unabated: by 1990 it is estimated that it
will be worth £350 million.

But, for many people, industrial robots seem
rather dull. A machine that repeatedly welds parts

on the framework of a car, or-endlessly sprays
paint, is hardly the fictional image of robots.
Whether the ideal robot will ever be created is a

~ matter of conjecture. And whether such a robot
would be designed in the image of man is also
difficult to determine. But by taking a close look at
some aspect of robotics, as we will be doing in this
series of articles, we can judge for ourselves what
form the robots of the future may have.

Robot Speak
| Robots, at least in fiction, have been given such a

variety of names that you might find it useful to have
a glossary of the most common terms used. Bear in
mind though that just because something Is given a
name, it does not i imply that it actually
exists!

Android: A robot designed to look like ahuman

being in every respect.
Anthropomorphic: Literally ‘man-like’. An android is
anthropomorphic in every respect but many robots
are designed to be anthropomorphic in only some
respects. For example, they may have an arm that is
like a human arm.
Automation: The automatic control of a
manufacturing process.
Automaton: A machine with concealed workings that —
usually performs only a predetermined series of
functions. The early mechanical men were
automata. It also has a more technical meaning
when associated with automata theory, which is an
analytical system by which any device can be
Studied and described — robots, computers, even
people.
Cybernetics: [he study of systems of control and
communications. Devised by Norbert Weiner in
1947, the central claim of cybernetics is that it can
be used to examine biological systems as if they
were machines. |
Cybert: A fictional idea of a mechanical humanoid.
Cyhot: Also fictional; a robot with human mental
abilities.
Cyborg: A Cybernetic organism in which some parts
are biological and others mechanical.
Doppelganger: An exact replica of a particular living
person — although this is usually a spirit or ghost.
Droid: A good robot that obeys Asimov's Three Laws.
End effector: Current terminology for a robot S
‘hand.
Homunculi: Little men or manikins.

| Manipulator: Another term for a robot's hand.
Mechanisation: The replacement of one process by a

mechanical process.
Metal-collar workers: Industrial robots. Human
office workers are often called ‘white-collar
workers, and manual workers are known as_blue-
collar’ workers. Inevitably, robots have started to be
referred to as metal-collar workers.
Robot: A machine that is able to carry out some
human functions, although it may not necessarily
look particularly human.
Roboties: The science of studying robots.

ROBOTICS/APPLICATION | |

Asimov’s Laws Of Robotics
1. A robot may not injure a human being, or, through
inaction allow a human being to come to harm.

2. A robot must obey the orders given to it by human
beings except where such orders would conflict with
the First Law.

3. A robot must protect its own existence as long as
such protection does not conflict with the First and
Second Laws.

Ford — The Sierra Assembly Line

What Is A Robot?
If you look in the glossary you will see that we have
defined a robot as ‘a machine that is able to carry
out some human functions, although it may not look
particularly human’. Obviously, this is a very wide

| definition — it could be applied, for instance, to
computers (because they carry out some human
calculating functions). In common usage, however,
a robot should have recognisable human qualities. tt
may be able to move around, or perhaps even walk.
It may have an arm that resembles a human arm. It
may be able to see things and hear things. It may
even have a very high degree of intelligence.

The exact form and capabilities of robots depend
in the main on two things: what we want them to do,
and what we can get them to do. For instance, an
industrial robot used for welding may not be able to
move around — not because we could not make a
robot move around, but because we want it to stay in
one place and get on with the welding. Similarly, a
domestic robot may be able to make a cup of tea,
but it might not be able to bring it upstairs to your
bed, because it may not be possible to build a robot
that can climb stairs without spilling your tea!

The term ‘robot’ has become the generic word for
all human-like machines, and the limitations on
what they are and what they can do rest with those
who design and build them. These limits are being
expanded almost daily.

Fiat — Torsion Axle Assembly

Ruling The Robot
When robots are capable of
independent action, then
Asimov’s Laws may well form
the basis of their behaviour.
Today’s robots, however, are
incapable of identifying a
human, so the mores of robot-
human interaction are as yet
irrelevant

Robot Assembly
For some time to come, robots
will be used mainly on
production lines. The economics
of mass production make them
ideal assembly-line workers, as
the Ford and Fiat factories plainly
show. Specialisation usually
demands that-these robots be
reduced to one or two arms
equipped with grippers,
spanners and welding gear

THE HOME COMPUTER ADVANCED COURSE 603

technique of recursion (an instruction that
refers to itself) to great effect. Coupled with

interesting results.

draw a square:
! ~ RT-ANGLE os eee ck

TO SQUARE | i _INSPI: SIDE (ANGLE + Nc) INC au
FD 90 ee Lee a oe
RT 90 ee ee — 2

ae SQUARE a —— faputs 507, 104030, 15220,53020will
END ae _ do initially. Why do some shapes close and others @

2 Le Nae a hes toner cette en _ not? Can you: find ; a rule? She ee

gem lf you were to try this out, tthe WEE’ Would Gidwa ‘The simple repetition of a. piece oF bade: is
a J square and then carry on moving the — ea to as iteration. Loco uses REPEAT for this

| Gor BREAK. The most noticeable thing about 1

other words, it is ‘recursive’.

©, SQUARE, so Loco fetches the defi
ON » and begins to obey it. This will go on ad STOP RULES | oo oe

ae infinitum if the program is not interrupted. All of the recursive pede we Have looked at ie ee
It is also possible to use re urs a

| procedures that require inputs:
2

TO POLY ‘SIDE ANGLE
FD:SIDE
RT :ANGLE a
POLY ‘SIDE ANGLE

END

Serer

es

oe 3 ee — Ss oN

Z ~ \ ‘ \ ‘

az input in the recursive call. ‘Thus: og ea ae
fe NS \ \ : \ et es ‘ Fa” as

as Bee. \ \ \ \ een : 3 ‘s teen te

TO POLYSPI :SIDE “ANGLE ee ae
FD :SIDE as
RT-ANGLE 5 6
POLYSPI (ae 5 a Se

END | |

604 THE HOME COMPUTER ADVANCED COURSE — : ee

) The LOGO language uses the mathematical

variable inputs, the use of recursion in-
procedures can produce some. ehh

One of the first programs we defined i in the course os
_ was a procedure to draw a square. The definition _
instructed the turtle to move forward a certain —

distance, turn right 90 degrees and repeat ag :
two steps three more times. cope is is another Tey to : Ce

perimeter of the square until you pressed Control- - purpose, while other languages use a variety of.

hing about this constructs, such as FOR.. . NEXT, REPEAT . .
| new SQUARE procedure i is that i it t calls itself — in

then turned RIGHT 90. The next instruction is _
nition of SQUARE —

have defined so far in the course epee page cv ee as. - :
| well as many we haven't looked at (you might like —

| to try using the procedure with an angle value of __
89). It is also possible to change the value of the a :

‘The only difference between this s procure and 3 2

POLY is that five is added to the value of S| DE each
time it is called. So if you began with POLYSPI 1090,
then the first call would draw a line of length 10,
the second would be 15, then 20, and so on. The
result is a spiral. You might like to experiment with

: different inputs: 10.90, 10 95, 10 120, 10 117, 10144 and
10 142 are interesting starters. You could also try

pS modifying the procedure — one possibility is to
: change addition to subtraction or multiplication.

Here’s a similar procedure that i increments the
angle rather than the ode value:

To INSPI SIDE ‘ANGLE INC | a :
FD ‘SIDE

have difficulty in. breaking | away from using ¥
- iteration, but turtle ‘graphics — is” ideal Tor oe

: experimenting with 1 recursive e calls. epimers ee Bees

so far continue repeating indefinitely. Clearly, we
need a way to make a procedure stop at some

point. Taking the SQUARE procedure as our ©
eee example, a possible place t to stop it would be after
it has drawn a complete square and the turtle’s _

heading is back to 0. This can be done ety athe a
a S : - ie ae rule’ to the ete aS ,

10 SQUARE. SIDE
FD SIDE
RT 90°
IF HEADING = 0 THEN STOP
SQUARE ‘SIDE

END: |

ae ee new primitives are STOP and IF, The first of
Lae these commands causes a procedure to stop

running and returns control to’ the calling
procedure. An IF statement is LoGo’s way of

ae making decisions. IF is followed by a condition,
and THEN by an action that i is carried out if the }
once is true.

UNTIL,
and WHILE. . . WEND. However, LOGO telies much :

When this d ie vk . ee the - more on recursion: than it does. on iteration. dh. en procedure is run, LOGO etc e you've programmed in other lan, sae VOUTIBY

definition of SQUARE and begins to obey the | y proms guages y a

instructions. The turtle is moved FORWARD 50 and

$y

Let’s look at a version of POLYSPI with a stop rule
and consider exactly what happens when it is run:

TO POLYSPI : LENGTH
IF :LENGTH > 15 THEN STOP
FD :LENGTH
RESO:
POLYSPI (:LENGTH + 5

END

This is what happens when we run POLYSPI 10. The
POLYSPI procedure is called and a local variable is
defined with its value set at 10. Since this value is
not greater than 15, LoGo proceeds to carry out the
movement FD 10 RT 90, and then makes a new call
to POLYSPI, but this time with an input value of 15.
This causes a copy of the procedure to be called
again. Because LENGTH is not greater than 15, the
turtle is made to move FD 15 RT 90, and another call
to POLYSPI is made. But this time, the local variable
has been increased to 20, so the procedure stops
and returns control to the procedure that called it
(POLYSPI 15). This procedure in turn has come to
its final line, and returns control to its calling
procedure. This also stops, at which point the
program has come to its end.
We have shown how recursion in LOGO involves

procedures calling copies of themselves. It is
important to keep in mind that the recursive calls
are copies that exist alongside the original
procedure, working as if they were completely
different from it. When finished, such a procedure
always returns control to the procedure that called
it. To illustrate more clearly the process of
returning from procedure calls, we can rearrange
POLYSPI in this way:

TO POLYSPI :LENGTH
IF :LENGTH > 15 THEN STOP | ,
POLYSPI (:LENGTH + 15
FD :LENGTH
RT 90

END

If you run this you will see that the program does
its drawing ‘backwards’: the lines are drawn
spiralling inwards rather than outwards. (This will
be shown more clearly if you use a larger value in
the condition statement — for example, using 50
instead of 15.) What is significant here is that LoGo
draws each line as control is returned from the
procedure calls. In our previous example, a line
was drawn and control was then passed to another
procedure. But here, all the procedures are called
before any drawing begins, and the last created
value of LENGTH is the one used first.

Finally, we should note that recursion is a
technique that uses up a lot of memory.
Procedures in which the recursive call is in the last
line are the most efficiently implemented,
however, as they don’t take up any extra memory
no matter how many times theyre called. If a
procedure can be written so it is ‘end recursive’
then this is usually worth doing.

Procedure Problem 3
Write a recursive procedure to draw a tower of
Squares one on top of the other, halving the length of
the side each time.

BRIAN MorRis

COMPUTER ADVANCED COURSE 605

Our series of articles on ‘programming |
techniques should have provided plenty of
ideas for program design and development.
In this final part, we discuss the methods
that may be used to test : a 1 finished program.

One of the great echeiaies of programming inan
interpreted language like BAsIc is that code can be |
tested as it is being written. The programmer can,
at any time, type RUN and see what happens. On
most machines, it is a simple matter to “break’ into

-a running program, PRINT the values of key
variables, change these values and then CONTinue.
All this means that most of the more obvious
mistakes will have been spotted and corrected. Yet
this kind of ad hocdebugging is not a substitute for
testing, which must be done when the program 1S
in its complete and final form.

Validation testing aims to ensure that a program i
will do exactly what it is meant to do. For any legal
set of input data it must produce the correct
output, and for any illegal input it must take the:
appropriate actions. A simple way to test a
program might seem to be to give it a sample of
every legal input and then check that the results are
as expected. For almost every program, this will be
impossible, however. Even a program that takes

_two integers, adds them and prints the result
would need to be tested for every possible integer

_ value! Yet this is only part of the problem, as every
illegal value would need to be tested, too.

Another possibility might be to look at every
‘path’ through the program. A particular path can
be found by following one route through a control
flow diagram (flowchart) from beginning to end.
Each branch on the way allows for alternate paths ©
and each loop adds more. Figure 1 shows a simple
program that is a loop containing a number of

IF... THEN statements. There are four paths
within the body of the loop and the loop 1s
executed 10 times. This means that the number of
unique routes from ‘star?’ to ‘finish’ is 1,398,100 —
a staggering number for what would probably —
amount to a dozen lines of code. Clearly, testing
this way would be out of the question.

So, if exhaustive data testing does not work and
exhaustive logic testing does not work, what does?
The surprising answer is that nothing does. There
is nO way to test completely a reasonably complex
program in a realistic time. Partly for this reason,
testing follows the law of diminishing returns —
the number of errors found per unit of effort
decreases with each extra unit. So, the time to stop
is when the effort of doing it outweighs the cost of
the program’s (as yet undetected) faults.

606 THE HOME COMPUTER ADVANCED COURSE

However, despite these drawbacks, it is worth
devising some method of testing. A reasonable
assumption is that if a machine will operate
correctly on one datum of a particular type it will
operate correctly on all data of the same type. So,
if a subroutine works for one positive integer
within its range, it should work for all positive
integers in that range. This leads us to a type of
testing known as ‘equivalence class testing’. The
idea is to develop a set of test cases that are each
representative of a class of cases that should all
behave in the same way. Thus, if a piece of code
checks that an input is in the range 1 to 100, we
should test for inputs that are less than the lowest
value expected, greater than the highest value, and
within the expected range (value< 1; value> 100;
and 1=<value=< 100).

Examining every logic path can also be
simplified to invoking each point of entry to all
routines (although ideally there should only be
one for each) and, inside each routine, covering
each possible outcome of every decision branch.
In figure 2 we have a routine for adjusting bonus
points in a game. It takes the input parameters

Just Testing
- Acomplete set of faci:
calculated test data for the

LEVEL
6
4
i
4
7

1

1

6
6
4

7h
4
i

INPUT

200
950
990
200
200

2900
990
200
200

2900
2900
950
950

— example illustrated in the
flowcharts might look like this:

OUTPUT
HITS BONUS BONUS

1300
2300
3950
800

1400
2600
950
300
300

2600
2600
950

— 590

|

bs af

-BONUS,LEVEL and HITS and returns a (possibly —
new) value for BONUS.It might be written thus:

6030 IF LEVEL>2 AND HITS=10 THEN
BONUS=BONUS*LEVEL

6040 IF LEVEL=6 OR BONUS> 2000 THEN
BONUS=BONUS+100

To cover the outcome of each conditional
expression, we need to consider the inputs to each
that would cause an output of ‘yes’ or ‘no’. In both
decisions we are looking at the effects of two
variables combined by a logical operator (AND and
OR). This means that we have to take the combined
values of the variables and not their individual
values into consideration. To see why, consider
what would happen if we tested values for LEVEL of
4 and 1 and for HITS of 10, 5 and 20 in the first
decision. When LEVEL=4, the three values of HITS
are tested but when LEVEL=1 they are not. This is a
case of part of a decision ‘masking’ another part.
So that we can test each part separately, it is best to
simplify compound decisions.

Looking at figure 3, we can see that with four
binary decisions there are 2* (=16) possible
outcomes and we must cover them all. A start is to
list the conditions for a yes or no outcome for each
decision like this:

yes

no

These can then be used to derive the values for
representative test data. For instance, for the path
taking the route adfi (see figure 3), LEVEL must be
greater than 2 and equal to 6, HITS must be not
equal to 10 and BONUS may be any value (because
it is not involved). The values LEVEL=6, HITS=20
and BONUS=150 would exercise this path tS
would many others, of course. The route abehj
could be tested with LEVEL=4, HITS=10 and
BONUS=600 (don’t forget we are talking about the
input value of BONUS that may later be multiplied
with LEVEL).

Equally importantly, the results that should be
produced by each set of test data should be
calculated before the test run so that the results can
be compared. The input data on their own will
merely test whether the program runs. To test that
it is doing what it should, the output must be
calculated (by hand) beforehand. A complete set
of test cases for this example is shown (left). _

Equipped with a method of ‘exercising’ our
software, we now need a way of tackling a large
program so that the complexity does not become
overwhelming. It is here that another benefit of
structured programming is felt. Programs written
as a collection of independent modules arranged
in a hierarchy allow us to test each module
individually. Because the modules are arranged in
this way, we can start with the topmost module and —
work down, testing each individual module only —
when all of those above it have been tested, and we

Decision Masking
Simplifying compound decisions
and labelling the flowchart links
makes systematic testing easier

can use already-tested modules to provide data for
those lower in the structure. |

The module being tested will have above it
(unless it is the first one), a fully tested driver
module. The modules below it, known as stubs,
are, so far, untested and therefore unreliable, so
they are simulated by short pieces of code that
simply return the appropriate test data when
called by the module being tested. This
arrangement is sometimes known as a fest harness
and it is a framework into which module routines
can be put for testing. Figure 4 shows the principle.
Modules 1, 2 and 3 have already been tested while
modules 5, 6 and 7 are simulated.

One final point must be stressed. Testing is an
important part of the program’s life cycle and, as
such, deserves to be well documented. It pays to
keep records of the test data derived for a routine
so that, if it shows a bug later, the same tests will
not have to be repeated, or the testing can be
examined for where it was inadequate.

code that artifically generates

wad QOOOGUDO
SO0GO0O0000L7
OOOO 07000000;

Top-Down Testing

Testing is made much simpler by
the top-down approach, since
each module can be tested as it
is written, both in isolation and
in association with othertested
modules. The behaviour of
unwritten modules can be
simulated by writing ‘stubs —

examples of the module's
predicted output

LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 607 .

IAN McKINNELL

Plug-in Protection
_ Filtering the mains power supply
using a plug-in unit like this to
suppress high voltage ‘spikes’ or
current surges can save computer
users hours of wasted effort by
eliminating the accidental resets
‘that may be caused by such
transients

FILTERING
Anyone who has ever used the tone control on an
amplifier knows the commonest meaning of
filtering — altering a signal by blocking the
transmission of some of its component
waveforms. The simple rumble filter often seen
on audio amplifiers, for example, is a variable
high-pass filter, which passes only those signals
whose frequency is higher than some set value: as
you turn it up, this lower limit is raised, thus
favouring the high-frequency treble sounds.

The filtering of computer data transmissions to
remove electrical noise is vital in preventing errors
being induced; both frequency filters and error/
parity coding are used for this purpose. Many
Sparen are fitted with a mains supply filter to

block high-voltage ‘spikes’ or ‘transients’ (usually
induced by the switching of high-current devices
such as lift motors or commercial freezers). These
pulses might otherwise get past the computer’s
voltage regulator, and damage the chips or reset
the system.

Information can be filtered, or masked, by
logical operations. For example, ANDing the
contents of a byte with 10000000 masks or filters
the lower seven bits, passing only the most
significant bit. If the byte contains a two’s
complement number, then this filtered result is the
sign of the number, indicating whether it is
positive or negative.

FLAG
A program variable whose value indicates the
state or outcome of a process is called a flag — so
named because it is analogous to a real flag, which
can signify different meanings depending on
whether it is up, half-mast or down. The CPU has
a flag register (also called the status or condition
code register) whose bits (the flags) are set to show
the outcome of the processor operations. If an
eight-bit processor added 236 to 101, for

608 THE HOME COMPUTER ADVANCED COURSE

example, then the zero flag would be cleared,
showing a non-zero result, and the carry flag
would be set, showing that the result was greater
than 255 — the accumulator’s numerical limit.
Some of the processor’s Assembly language
instructions vary their actions according to the
state of these flags, thus allowing program
decision-making.

FLIP-FLOP
Since computers run on binary logic, an electronic
device that exhibits two stable states, and will
switch states in a predictable way, is an essential
requirement for constructing either memory or
logic circuits. This essential component is called a
flip-flop, or bistable (see page 168), and it is
usually made by cross-connecting two NAND
gates so that the output of each is an input of the
other (see page 228).

FLOATING POINT NOTATION
A computer usually has at least two formats for its
internal representation of numbers: integer and
floating point notation. Integer notation is
reasonably straightforward two bytes are
allocated to each integer variable (e.g. X%) in
signed 16-bit notation; the range of possible
integers, therefore, is:

Decimal -32768 +32767
Binary 10000000 00000000 to O1tTttTT 11111171

In floating point notation, however, numbers are
represented thus:

+exponent
+mantissa xbase

: peep: +19
e.g. + 317440 = +.60546875 x2

Since, in a binary machine, the internal number
base is always two, there is no need to store it, so
only the signed mantissa and exponents are saved,

+number =

Mantissa
oe a

byte 0 byte byte2 _byte3
Both the mantissa and exponent are stored in twos
complement form, so thatthe most significant bit
of each is the sign bit. If the mantissa is adjusted so
that it is always in the range (0.5 < mantissa < 1.0
— or, in binary fractions, 0.1 < mantissa < 1.0)
then it is said to be normalised; this means that the
first bit of the mantissa after the sign bit will always
be one.

The great advantage of floating point notation
is that it allow compact storage of very large and
very small numbers. As more bits are allocated to
the mantissa, so the precision of this format
increases; adding bits to the exponent extends the
range of expressible numbers. Furthermore, the
exponential format makes writing efficient
arithmetic routines — especially for multiplication
and division — reasonably easy.

4

Portable computers can be fairly large,
‘luggable’ machines or they may be small
enough to fit into a pocket. Between these
two extremes are the ‘lap-helds’. One of the
latest contenders in this sector of the market
is Epson’s PX-8, a portable machine with 64
Kbytes of RAM, CP/M and a collection of
software supplied.

The PX-8 comes in a case the size of a telephone
directory, and weighs approximately 2.3 kgs
(5 Ibs). The casing is finished in two tones of beige,
with a sliding metal handle, and at first sight the
package looks very little like a computer.
However, part of the case slides off to reveal a full-
featured computer keyboard and a folded-down
display screen. The screen is released by moving a
sliding switch marked ‘UNLOCK’, which also
reveals a microcassette tape recorder. The screen
panel is ratchet-controlled and may be placed in
any one of 11 positions, although only five or six of
these give a good viewing angle.

The keyboard has 72 typewriter-style keys,
colour-coded to indicate their usage. The dark
brown alphanumeric keys are arranged in
standard QWERTY format on the US and UK
versions (there is also a French AZERTY model
for sale in Europe), with the ‘£’ sign on the English

EPSON PX-8/HARDWARE |

keyboard replacing the ‘#’ (hash mark) on the
American version. (All the ‘international’
characters may in fact be accessed from any of the
keyboards by changing the PX-8’s DIP switches.
This process is explained clearly in the user’s
manual.) There are also four bright orange cursor
control keys, Insert, Delete and Home keys, three
system function keys (Escape, Pause and Help),
and five programmable function keys.

The keyboard is manufactured to a high
standard and is especially easy to use if the
machine is lap-held. However, the keyboard is less
useful if the PX-8 is located on a desktop, as the
keys require a straight up-and-down pressure.
Two retractable legs are supplied; these tilt the unit
but fail to solve the problem. The Caps Lock,
Number and Insert keys are toggle switches that
are used to change the PX-8 display modes —
three small red LEDs indicate which mode is
currently in operation.

The Epson documentation is comprehensive
and extremely well written. Two thick manuals are
supplied. The first is a user’s manual of several
hundred pages, which covers setting up the
machine, the use of the hardware and software,
and CP/M operations. This manual also includes
memory maps, complete lists of available
characters and their associated codes, and a
somewhat long machine code program for saving

SS

Latest Offer
The PX-8 lap-held computer is
made by Epson, famous for its dot
matrix printers, the HX-20
portable, and the QX-10 desktop
business computer. The PX-8
comes with 64K of RAM, a Liquid
Crystal Display screen, CP/M, and
several software packages for
£798

THE HOME COMPUTER ADVANCED COURSE 609

The PX-8 has an 8-line by 80-character LCD screen that runs off
the machine's battery. The screen provides 480 by 64 pixel
resolution for graphics displays

and loading the graphics screen from disk. The
second volume is a superb BASIC programming
reference guide, which is also several hundred
pages long. This book begins by explaining how to
instal and use BASIc (supplied, like the bundled
software, on a ROM ‘capsule’), before going on to
a clear discussion of the nature of programming,
an examination of the various PX-8 display
modes, and a detailed breakdown of all BAsic
commands available.

The PX-8 uses a Z80-compatible CMOS CPU.
CMOS (Complementary Metal Oxide
Semiconductor) chips require considerably less
power than standard CPU chips, and this fact,
together with the PX-8’s use of a low-power LCD
screen, enables the unit to be run entirely on
battery power. Two battery units are supplied —
one for main power use and the other as a back-
up. The battery must first be charged before the
computer can be used, so an eight-hour wait must
be expected between first setting up the machine
and actually using it. The main unit is rechargeable
and gives up to 15 hours of continuous operation
before charging is necessary. Epson claims a life

_ expectancy of three to four years for this unit.
Once the PX-8 is ready to go, the operating

system must be initialised. The steps needed to
accomplish this are explained in detail in the
manual; these involve entering the day, date and
time, and taking care of a few ‘housekeeping’
tasks. One of these is the formatting of a RAM
disk. The PX-8 has the ability to set aside a portion
of RAM — user selectable between nine Kbytes
(the default value) and 24 Kbytes — for use as a
‘disk’ storage device. The operating system treats
this area of memory in exactly the same fashion as
it would an external disk drive. Before use, the
RAM disk must be formatted and the amount of
-RAM tobe used specified. Epson also provides an
add-on RAM disk unit, containing 120 Kbytes of
extra RAM at a price of £270.

Once these details have been taken care of, the
PX-8 loads the CP/M operating system from
ROM and displays a CP/M utilities and ROM

610 THE. HOME COMPUTER ADVANCED COURSE

ROM Exchange
Pulling back a small panel on the underside of the PX-8 reveals the
slots that hold ROM-based software. Portable Wordstar is installed in
the machine, along with the CP/M operating system. Io switch from
Wordstar to Calc, you simply exchange the ROM chips

software directory in menu form on the LCD
screen. Software in any of three formats may be
used — cassette, disk or ROM. ROM software is
held on EPROM chips that slide into a socket
located underneath the machine. The software
supplied with the PX-8 — Portable Wordstar,
Portable Calc and Portable Scheduler — is
supplied in this ‘capsule’ format, as is the BASIC
interpreter. To select a particular application, the
cursor keys are used to indicate the desired choice
and Return is then pressed. The chosen program is
loaded from ROM (addressed by the PX-8 as
drives A and B) into RAM (addressed as drive A).

The LCD screen gives an eight line by 80-
column display, with a graphics resolution of 480
by 64 pixels. The greatest drawback of this type of
screen — and in fact the only major disadvantage
of this excellent machine — is the slowness of the
display. Characters appear quickly enough as they
are typed in, but any erasures — especially those
involving whole words or sentences — are slow.

The software supplied with the PX-8 is fairly
comprehensive. In addition to the word processor,
spreadsheet and database already mentioned,
Epson provides a telecommunications program
for use with a modem, and a program that allows
files to be transferred from the PX-8 to larger
machines, such as Epson’s QX10. And, as the
PX-8 is a CP/M machine, much existing CP/M
software should also be usable.

PX-8 Basic is Epson-enhanced Microsoft,
including AUTO line numbering and renumbering,
a full screen editor, graphics and sound
commands, statements that support
communications through the built-in RS232
interface, and commands that enable the
microcassette recorder to be used as if it were a
disk drive (for direct access storage).

All in all, the Epson PX-8 is a marvellous
computer. It is ideal for business executives, for
journalists, or for anyone who needs a small
powerful computer that may be used on the move.
With its excellent features and reasonable price,
the PX-8 is in a class of its own among portables.

ee

64K RAM, 39K ROM plus 6K

video RAM

Text: 80 columns x 8 rows.
Graphics: 480 x 64 pixels

e a 8
‘psn

RS232C, serial, bar code reader,

analogue input

=
enhanced Microsoft BASIC

operating under CP/M

2 key typewriter- style, QWERTY
format, including cursor control
and five programmable function
keys. 12 keys can be used to form
a a numeric | keypad

Two large ring- -bound volumes, an
operations manual and BASIC
reference guide. Both are very
thorough, and well written

aE

Wide LCD screen (80 characters)
makes it easy to follow what is
happening on the screen; ROM-
based software simplifies loading
programs into memory; easily
expandable

LCD screen shows only eight lines
and is slow to manipulate. Even
with excellent documentation,
CP/M is nota very triendly
operating system, especiaily for a
first-time user

CHRIS STEVENS

COMPUTER ADVANCED COURSE 611

IAN McKINNELL

(

Tandem Turtie
Having discovered how to drive
the Lego vehicle backwards and
forwards, we can now link two

of them to make a buggy. The
motors can be switched
individually, making the new
vehicle far more manoeuvrable

than the old

DUAL CON

In the last section of this series we wrote the
software to control a Lego car with one
motor. We were able to move the car in two
directions by simply switching the current
from the output box. Now we extend these
principles to control a Lego car powered by
two motors. 7

If we use two motors of equal power to drive a
vehicle, we can gain computer control over all
directions of movement by combining the forward
and reverse movements of each motor. This allows
us to turn the vehicle as well as direct it forwards or
backwards. There are, in fact, two methods of
turning a twin motor vehicle; the first of these is
simply to stop one motor while turning the other.
This will cause the vehicle to turn in an arc,
pivoting about the stationary wheel(s). The
second method involves turning one motor
backwards as the other turns forward, improving
the manoeuvrability of the vehicle as, in turning,
the vehicle will pivot about its central axis.
We can control each motor bi-directionally by

using the four red outputs on the low voltage
output box (built on page 574) and connecting the
right-hand motor to terminals 0 and 1, and the
left-hand motor to terminals 2 and 3 (positive and
negative, respectively).

Each motor is connected across a pair of
adjacent positive output terminals so that we can

ADVANCED COURSE

RO

have independent directional control of each
motor. By placing the appropriate number in the
data register we can now make the vehicle move
forwards or backwards, or turn to the left or right.
The right-hand (RH) motor will go forward if line
0 is set high and line 1 is set low, and go backwards
if line 1 is set high and line 0 is set low. Similarly, the
left-hand (LH) motor will go forwards if line 2 is
high and line 3 is low, and backwards if the
converse is true. By combining these movements
we can control the motion of the whole vehicle:

The following program allows us to control the
vehicle directly from the keyboard using “T”’ for
forwards, ‘B’ for reverse, ‘F’ to turn left, and ‘H’ to
turn right. If no key is pressed then the vehicle will
stop. ; |

BBC MICRO
10 REM BBC TWIN MOTORS
20 DDR=&FE62:DATREG=&FE60
30 ?DDR=255
40 REPEAT

50 AB=INKEY$(10)
60 PROCtest_ keyboard
70 UNTIL AB="'X”’
80 ?DATREG=0
90 END

1000 DEF PROCtest_ keyboard
1010 IF A®=""" THEN ?DATREG=0
1020 IF INKEY(—36) = —1 THEN ?DATREG=5
1030 IF INKEY(—101) =—1 THEN ?7DATREG=10
1040 IF INKEY (—68) =—1 THEN ?DATREG=6
1050 IF INKEY (—85) = —1 THEN ?7DATREG=9
1060 ENDPROC

COMMODORE 64
10 REM CBM 64 TWIN MOTORS
20 DDR=56579: DAT REG=56577
25 POKE650,128: REM REPEAT KEY MODE
30 POKE DDR,255
40 GETAS
50 GOSUB1000:GOTO70
60 POKEDATREG,O
70 IF A®<>“’X" THEN FOR 1=1T0100:NEXT:GOTO40
80 POKE DATREG,O
90 END

1000 REM TEST INPUT S/R
1005 IFAB="" ’’ THEN POKE DATREG,O
1010 IFA8=""T"” THEN POKE DATREG,5
1020 |IFAS=""B" THEN POKE DATREG,10
1030 IFAB="‘F’” THEN POKE DATREG,6
1040 IFAB=""H” THEN POKE DATREG,9
1050 RETURN

Ben,

In each version of the program the vehicle will
move only while a key is being depressed. As soon
as the key is released, the motors are turned off by
placing a zero in the data register. The program is
exited in each case by pressing the ‘X’ key.

In the BBC version of the program the
procedure TEST-KEYBOARD allows us to test the
keyboard directly, rather than reading the
keyboard buffer, by using INKEY. This allows more
responsive control of the vehicle. The
Commodore 64 version firstly turns on the
keyboard auto-repeat so that if a key is held down
it will keep sending characters into the keyboard
buffer to be read by the GET command.
Unfortunately there is no way of reading the
keyboard directly and accurate control is therefore
more difficult than on the BBC Micro.
Responsiveness can be improved by clearing out
the keyboard buffer just prior to reading it.
Inserting the following line into the Commodore
version of the program will achieve this.

35 GET JS:IF IS< >“ THEN35

In addition, the GOTO at the end of line 60 should
be changed to GOT035.

The speed at which a key repeats when held
down can cause a problem with both versions of
this program. If the main program loop is executed
faster than the key repeat time, then when the
routine comes to test for a keypress again it will
think that no Key is being pressed. This will result
in a rapid switching on and off of the motor as the
output alternates rapidly between that set for the
chosen direction and zero. In each of the versions
of the program this problem has been obviated by
adding code to slow down the execution time of
the main program loop. In the BBC version using
INKEYS(10) causes the computer to ‘hang

around’ for 10 hundredths ofa second, waiting for
an input, before moving on. In the Commodore 64
version a short delay loop has been added in line
60. The values of these delays were found by a
process of trial and error, and are dependent on
the length of time needed to execute one pass of
the routine. You may find, when writing your own
programs, that the routine execution time exceeds
the key repeat speed; if not then simply insert a
short delay into your code.
Now that we have gained control over the
movements of our vehicle it is interesting to design
a program that will ‘memorise’ a sequence of
moves and replay them. ‘To do this we can make
use of a two-dimensional array that records
direction and the time taken for each different.
manoeuvre made. The first part of such a program
will be the same as those already given but the
second part will replay the stored data. The data
will be stored in an array DR(), where DR(C,1) stores
direction and DR(C,2) stores the time taken for each
movement. A new element in the array is used
each time a new direction is selected. This
condition is indicated by a change in the contents
of the data register. A counter, C, is used to keep
track of the array elements.

BBC MICRO
1000 REM BBC MOVEMENT MEMORY
1010 DDR=&FE62:DATREG=&FE60
1020 DIM DR(100,2)
1030 ?DDR=255:C=1:REM INIT COUNT ~

1040 REPEAT

1050 AB=INKEY (10)
1060 PROCtest_ keyboard

1070 UNTILAB="'X"’

1080 ?DATREG=0

1090 DR(C—1,2)=TIME

1100 REPEAT A$=GETS
1110 UNTIL AB="C"’

THE HOME COMPUTER ADVANCED COURSE 613

.

3:

directions causes th
e —

KEVIN JONES

1120 REM REPLAY DATA
1130 FOR I=1TOC
1140 7DATREG=DRi(I,1)
1150 TIME=0
1160 REPEAT UNTIL TIME>=DRi(I,2)
1170 NEXT |
1180 END
1190 : | :
1200 DEF PROCtest_ keyboard ;
1210 IFAB="" THEN ?7DATREG=0

1220 IF INKEY(—36) = —1 THEN ?7DATREG=5
1230 IF INKEY(—101) = —1 THEN ?7DATREG=10
1240 IF INKEY(—68) =—1 THEN ?7DATREG=6
1250 IF INKEY(—85) = —1 THEN ?7DATREG=9
1260 PT=?DATREG
1270 IF PT<>DR(C—1,1) THEN PROCadd_ data
1280 ENDPROC |
1790:) . 2
1300 DEF PROCadd_ data a
1310 DR(C—1,2)=TIME: REM STORE LAST TIME 7
1320 TIME=0: REM START NEW TIME
1330 DR(C,1)=PT: REM STORE PORT STATUS
1340 C=C+1: REM INCREMENT COUNT
1350 ENDPROC

COMMODORE 64
10 REM CBM 64 MOVEMENT MEMORY
15 DIMDR(100,2): REM DIRECTION ARRAY
20 DDR=56579:DAT REG=56577
25 POKE650,128 : REM SET KEY REPEAT MODE
30 POKEDDR,255: REM ALL OUTPUT
35 C=1: REM INITIALISE COUNT
40 GETAS
50 GOSUB1000: REM TEST INPUT
70 1F AB <>"X” THEN FOR |=1T0200:NEXT:GOTO40
80 POKE DATREG,O: REM OFF
85 DR(C—1,2)=TI-T: REM ENTER LAST TIME
90 STOP: REM TYPE ‘CONT’ TO CONTINUE
95 REM REPLAY DATA

100 FOR I=1TOC
110 POKEDATREG,DR(I,1)
120 T=TI sf
130 IF (TI-T)<DR(I,2)THEN130
140 NEXT
150 END
eee

1000 REM TEST INPUT S/R
1005 IFAB="’ "" THEN POKEDATREG,O
1010 IFA8=""T" THEN POKEDATREG,5
1020 |IFA8="'B” THEN POKEDATREG,10
1030 |FAS=""F’ THEN POKEDATREG,6
1040 IFAB=""H" THEN POKEDATREG,9
1045 PT=PEEK(DATREG) |
1050 IFPT<>DR(C—1,1) THENGOSUB1500
1498 RETURN
1499 :
1500 REM ADD DATA TO ARRAY
1510 DR(C—1,2)=TI-T: REM ADD LAST TIME
1520 T=Tl: REM TAKE NEW TIME
1530 DR(C,1)=PT: REM ENTER CURRENT PORT CONTENTS
1540 C=C+1: REM INCREMENT COUNT
1999 RETURN

This program allows the user to move the vehicle
about under keyboard control. As each move is
recorded as a direction and a time interval, any
errors introduced in the timing of each movement
will produce errors in the replay. We are entering

into the difficult area of real-time computing,
where program structure and execution time can
become important factors. }

In the next instalment of Workshop we shall
take control one stage further by bringing our twin
motor vehicle under the control of a joystick.

614 THE HOME COMPUTER ADVANCED COURSE

Memory Movements
It is reasonably simple to write a
buggy-controlling program that
accepts directions from the ©
keyboard and drives the car
accordingly. It is not much more
difficult to extend the program
so that it stores the operator’s
commands, and then replays
them to the buggy, thus
reproducing — in theory — the
previous pattern of movement.
Comparing the original with the
supposed duplicate gives a
measure of the software
problems caused by dealing
with the real world: the
computer works in exact
numbers and times ona
simplistic model of a perfect
universe, not allowing for
inertia, frictional losses,
irregular surfaces and low-
tolerance engineering. In the
light of this experience, the
performance of LOGO-driven
floor turtles is impressive

INVASION FORCE

Never has ; a : game captured the public’s §
imagination so completely as Space
Invaders. Simple yet effective, it proved so
successful in the arcades that versions for
the most popular home computers were
eventually developed. We look at the
original Atarisoft version of the game.

Almost every home computer now marketed ee
a version of Space Invaders available. The game
has become so well known that, like Hoover or
Biro, it is now frequently used as a generic term —
to the extent that anyone playing any arcade game
is often said to be ‘playing Space Invaders’.
When Space Invaders was launched in 1978 it

quickly produced a fever of almost epidemic
proportions. Parents became worried that children
would spend all their time and money hanging
around in unsavoury arcades. What the watchdogs -

did not realise was that these children were in fact
investigating the future.

It can be said that Space Invaders changed the
way society saw computers. Before the game came
along to exploit the graphics capabilities of the
microprocessor, computers were considered
untrustworthy, the classic example being the
paranoid ‘HAL featured in 2001.

Space Invaders was the forerunner of the whole
shoot-em-up computer game genre. Since then

there have been literally hundreds of games
produced where the one hero or heroine has had to
face hordes of attacking nasties, with only their
speed on the fire button (and three lives left) to aid
them.

It is an undeniable fact that Sitios Invaders is
now showing its age. By today’s standards, the —
game is very simple — yet no other piece of
software has captured the public imagination to
such a great extent. The player controls a movable

laser base, which is used to fire at the massed ranks
of invading aliens that move menacingly down the _
screen towards the Earth’s surface. A ‘life’ is lost if
the laser base is hit by alien fire, or if the invaders
reach the bottom of the screen. .

There are several differences between the
arcade original and the versions available for
home computers. Instead of appearing out of thin

_ air, the invading hordes now emerge from a large
rocket that is situated to the left of the television
screen. The invaders themselves are more brightly
coloured and the sprites that form them are more
complex. The defensive barriers, behind which the
laser base could hide in the arcade version, are
now missing, and the invaders have a shorter
distance to travel before reaching the bottom of
the screen. But one factor has remained constant:
the menacing ‘heartbeat’ sound that accompanies
the aliens’ descent. This becomes more insistent as
the invaders get closer and closer, and serves to
generate a heady rush of adrenalin, which is
probably the major reason for the game’s huge
success. Another feature of both the arcade and
home computer versions is the ‘mystery’ bonus.
that is awarded if the player manages to hit one of
the flying saucers that occasionally cross the screen
from left to right.

Space Invaders has now managed to retain its
appeal for six years. Despite the availability of
considerably more sophisticated pieces of
software, Space Invaders remains an exciting and
highly enjoyable game — it is truly a ‘software

| classic’
—

oe nAANN ’

THE HOME COMPUTER ADVANCED COURSE 615

LIZ DIXON

TAN McKINNELL

— Ver sion was

then translated, virtually lin
two machines. Partly because of this translation,
and partly because space was limited, the screen

_ formatting is rudimentary, and no use is made of
colour, sound or hi-res graphics. Improvements in —
all these areas can, therefore, obviously be made,

- but will not be discussed here.

USEFUL POINTERS
| We have examined ways of defining
characters on the Commodore 64, BBC

Micro and Sinclair Spectrum. Here we
discuss possible program improvements,
and concentrate on the problem of saving
and loading our redefined character set into
a specified | area of the 64’s ‘memory. |

Now a a4 aes up

difficult of the three to p :

Leaving aside questions of programming
_ efficiency (not really vital in this program, since

there are no speed-dependent tasks), we will
concentrate on the user interface: instructions, |

Wes help, command keys and facilities.
There are no instructions in the program,

a on mainly because the listing had to be fitted onto a
single page of the course. An instruction page ~

could be printed on the screen at the start of the
run, and there is probably room on the main screen
display for some abbreviated reminders — a
cursor movement display, perhaps, and one-word

- summaries of the command keys. This should
largely remove the need for a help page.

The choice of command keys might be
_ improved. On the BBC Micro and the Spectrum
the cursor is moved around the window by the
usual cursor control keys, whereas on the c
Commodore the unshifted function keys are used.
This makes for very convenient programming in
the Commodore version since the ASCII codes of
the eight function keys are consecutive between

616 THE HOME COMPUTER sina COURSE

133 and 140, but the layout of the keys themselves
is not exactly ergonomic and they do not repeat —
unlike the BBC and Spectrum keys. This last can
be changed on the Commodore by POKE 650,128,
but the function keys themselves cannot be made
easier to use, SO you may wish to restore cursor
control to the curser keys.

Another possible improvement is the dicice oe
cursor movement strategy. As written, this simply
disallows as illegal any command that would move

idow. The alternative is to
e ashion: if it is moved off

t can wrap around to

in ronan 3500.
rovide are ok minimum

and in all three vel nid be useful to be
able to copy one ck definition to another
character — so that CHRS(N) and CHRS(N+1)
represented the same character, for example. You
might want a hard copy of the new character set, so
a printer: option could also be added. The
program’s simple modular structure makes adding
these commands reasonably Stralgnttonward.

| COMMODORE 64 SAVE
A problem unique to Commodore Basic is that the
SAVE command seems to refer only to the entire
BASIC program area, whereas the other two

the BASIC program area by two nulitness pointers —
_TXTTAB (at locations 43 and. 44), and VARTAB (at 45
and 46). The first, TXTTAB, points to the start of the
BASIC program area (usually at address 2048
onwards), while VARTAB points to the start of the
BASIC ‘variables area; since this starts where the
BASIC program finishes, VARTAB effectively points

_to the end of the asic program area. If we change
these pointers so that they indicate the start and
finish of the new character set, and then issue a
SAVE command, that should solve the problem.

Before we do this, however, we might
reconsider the location of the character set itself.
The subroutine at line 61000 (see page 573)
copies the ROM character set to atwo Kbyte block

~ commands on the screen for you to execute. :
6) The TXTTAB and VARTAB pointers were set ae
Program 2, so SAVE “filename” saves the entire two
Kbyte character set area between 2048 and 4097. —
In future, to run the character generator program -

Of RAM beginning at 14336, and line 50 sets the
top-of-memory pointer below this block, to
prevent Basic from overwriting it. In this way, for
the sake of protecting two Kbytes, we are cutting
user memory by two-thirds. This presents no
problem while running the character generator

programs area at 4915: 2 ontiene The solution
seems to be to put the character set as low as
possible, and move Basic above it! This can be
done by adjusting the contents of the TXTTAB
pointers, but it cannot be done from within a BASIC
program, and it must be done before the character
generator program is loaded into memory. |

The sequence of actions, then, is:
1) LOAD and RUN Program 1. This orate 4 the
necessary relocation commands onto the screen,
so that you can execute them 1 in direct mode, by
pressing Return.
2) LOAD the character generator program and : =

: make the following changes: |

61100 CGEN=53248:NCGEN= 2048
61500 POKE PO, PEEKPO)AND2A)OR2 : ee

and delete line 50. .
3) SAVE this new v
4) LOAD and RUN the
before. ae

5) When you finish with the program, LOAD ;
RUN Program — “Program 1, this prit

- you must repeat this sequence, except for step 2.
_ When you want to retrieve the character set,

; you must LOAD and RUN Program 1, to move BASIC —
up in memory, and then LOAD the character set
thus:

LOAD“filename’, DN :

where DN (device number) is equal to one for
cassette use and eight for the disk drive. The ‘1’ on

_ the end of the command is known as the
_ secondary address, and is the Commodore way of
sending command parameters | heral
devices. I means that the fil oaded_
to the memory from whic saved,
rather eing directed by ae

e when a file is SAVEd the er aane
system S$

~TXTTAB.

program, but will be a potential source of difficulty
if we | for

the RAM start address as the first
data item in the file. When you use the unadorned |
LOAD command, the start address in the file is.
ignored in favour of the address ee to by

ih Gas you've re-located BASIC. = atch loaded: athe Ne
new character set, you must make the operating So ee

system point at the new character set; this ASee ee ee

— 204REM Jnthindiniiinkiinbiihiie |
800 PRINT CHRS(147):PRINT:PRINT =
400 PRINT“POKE43,0:POKE44,16:POKE45,3: POKEAG, 1
500 PRINT“POKE4096, 0: POKE4097, u POKE4098,
O:CLR:NEW"
600 PRINT CHRS(1 9)

— 1QQREM Reevereredeeeeee eee EE
— 200REM% _ PROGRAM2 — *
201 nO RUN THIS PROGRAM alge
202 REM* THEN HIT RETURN TWICE *
203 REM _ THIS RESETS BASIC PTRS — Se
204REM LRRREEA RARE ALAR EERE LEER,
300 PRINT CHRS(147):PRINT:PRINT.

- explained in the table, and is demonstrated = in the new version of line 61500. gone in this Se ee

artide. ee

Al 99R EM LLELELET IRATE RE LE LEE |

~ 200REM% — “PROGRAMA = oe
201REM* -RUNTHISPROGRAM * ©
202REM% THEN HITRETURNTWICE 8 &

— 203REM% THIS MOVES BASIC TO 4096 Ss &

400 PRINT“POKE43,0:POKE44,8:POKE45, 1: POKE46, ie -

_ THE HOME COMPUTER ADVANCED COURSE 617

500 PRINT“POKE4096,0:POKE4097,0: POKE4098, 0: CLR® |
— 600 PRINTCHRS(19)

MATCH-MAKING

indexed addressing on the 6809 processor.
Here we examine how this is used to

perform simple arithmetic on values in the
index registers and discuss the use of
subroutines in a string-matching program.

In the previous instalment of the course we took
our first look at indexed addressing on the 6809
processor. In indexed mode addressing, the
effective address specified by, for example,
OFFSET,X is formed as the sum of the offset (which
can be a constant or the contents of a memory
location) and the current value held in the index
register specified (in this case, the X register). We
saw that in some common situations the offset may
be zero, in which case we can write ,X (although 0,X
would also work). In special cases, one of the
accumulators A, B or D can be used for the offset
(e.g. B,X). And we took a look at how one of the
most common uses of indexing — stepping
through a table of values — can be made easier by
the use of auto-increment and auto-decrement
mode. This mode increments a register by one or
two after the instruction has been carried out (,X+
and ,X++), or decrements the register by one or two
before the instruction is carried out (,-Y and ,--Y).
Now we can briefly look at how indexed

addressing can be used to perform some simple
arithmetic on values in the index registers using the
LEA (Load Effective Address) instruction. The
normal arithmetic instructions will not work on
the values in registers other than the accumulators.
Although it is possible to transfer the contents of
the index register into the D accumulator, perform —
the arithmetic and then transfer the result back,
this is an awkward and slow procedure. The LEA
instruction (which can be applied to the X, Y, S and
U registers only) will perform any necessary
address calculations and then load the effective
address value. Normally the contents of an
effective address would be loaded, so this is a

useful alternative. |
Let’s take a look at an example. The instruction:

LEAX =A

will calculate the effective address as the sum of —1
and the current contents of the X register. This
address is then loaded back into X, effectively
decrementing the value in that register. This is not
the only use of this instruction; it could be used, for
example, to carry out an address calculation once
and save the result, rather than perform that same
calculation a number of times. Ae

It is also possible to do a certain amount of
_ arithmetic on the X register using the ABX (Add B to

618 THE HOME: COMPUTER ADVANCED COURSE

X) instruction, which does an unsigned addition of
the contents of B to the contents of X. However,
this is not as generally useful as LEA.

SUBROUTINES
A subroutine is a self-contained section of code
that is called from the main program (or another
subroutine) to perform a specific task. Once that
job has been done, control is automatically
transferred back to the calling program at the
instruction immediately following the original
subroutine call. There are three main reasons for
using subroutines: |

1) To save writing the same piece of code more
than once. It is more convenient to write an often
used piece of code. as a subroutine and call this
when it is required.
2) So that a library of common routines can be
built up, and then used in a number of different
programs.
3) To break a program down into smaller, more
manageable sections. |

The most significant thing to remember about
using subroutines in Assembly language is that
both the calling program and the subroutine will
be using the same registers. One of the most
common errors in machine code programming
occurs when, having stored a value in one of the
registers, a program calls a subroutine and on its
return finds that the contents of that register have
been altered by the subroutine. Therefore, it is vital
to know, and to document, the registers that a
subroutine uses. It is particularly essential to save
the contents of the registers being used when a
‘subroutine is called, and restore those contents
when control returns from the subroutine.

Later in the course we will look at how the
stacks are used both as a convenient way of saving
such data, and as a means of passing values and
addresses (parameters) to the subroutine. For the
moment, however, we shall assume that the
subroutine uses the same data as the calling
program (global variables) and any other values

that it needs will actually be in the registers. A
subroutine call is made by means of one of these '
instructions: . | :

@ BSR: Branch to SubRoutine
@ JSR: Jump to SubRoutine

The BSR command causes a relative branch — it
finds the subroutine at a certain offset from the
current value of the program counter. This
instruction is normally used for subroutines
written as part of the program. |

‘The JSR instruction calls a subroutine at a
certain specified address. This would be used for a

subroutine held in ROM, or for a library routine
that always occupies the same position in memory
— parts of the disk operating system, for example.
When the processor encounters a BSR or JSR

instruction, the current value of the program
counter is ‘pushed’ onto the system stack using the
S (stack pointer) register.If your subroutine uses
the S register for anything other than a further
subroutine call, you must ensure that it gets
restored to the correct value. The address of the
subroutine is calculated (in the case of BSR) and
loaded into the program counter. Thus, the next
instruction to be accessed will be the first one of
the subroutine. You must be sure, therefore, that
the subroutine begins with an instruction and nota
byte of data. !
A subroutine must end with an RTS (ReTurn

from Subroutine) instruction, the effect of which is
to ‘pull’ the old value of the program counter back
off the stack. Execution of the program will then
continue from where it left off before the
subroutine call.

The example program we give here is rather
more complex than those we have given
previously, but it can be made more manageable
by the use of a subroutine. The program searches a
table containing strings of unequal length, and
extracts a value associated with one particular
string. The strings are held in the normal way:
beginning with a byte indicating the string’s
length, followed by the characters that make up

au

the string, and ending with a 16-bit address
associated with the string.

The end of the table is marked by a zero length
string — in other words, there is a value of zero
where the length byte should be. We shall assume
that the address of the start of the table is held in.

910, and the address of the string whose match we
have to search for is held in $12. If the duplicate is
found in the table, then the corresponding address
is to be held in $14. If the string is not found, then
$12 and $14 should be both set to zero.

STRING-MATCHING z
String-matching is a task that occurs in many
situations — most notably in managing a BASIC
interpreter’s string variable accesses: each
identifier (or variable name) must be replaced by
the address in which the value of that variable is
stored.

The problem divides easily into two parts: we
must step through the table until either the string
we are looking for is found or the end of the table is
reached. At each stage in the search we. must
compare two strings (the one we are looking for
and the one at the current position in the table) to
see if they match.

This string comparison is an obvious candidate
for a subroutine, because not only is it going to be
used more than once in the program, but it also
enables us to split up the problem into useful

CTION

KEVIN JONES

THE HOME COMPUTER ADVANCED COURSE 619

sections. It is also a good subroutine to have
available for use in other programs. —

The subroutine needs two data items from the
calling program — namely, the addresses of the
two strings to be compared. Since the subroutine
has to step through the strings byte by byte, it is
best that these two values are passed to the index
registers, X and Y, where they will be needed. The
subroutine must also pass back two values, one to
indicate whether or not a match has been found,
and the other to show the address itself in the case
of a match.

TRUE OR FALSE
It is possible to pass a Boolean parameter (true or
false) using one of the condition code register
flags, but this requires an exact knowledge of the
effect of each instruction on the flags. In our
program we will pass values back to the calling
routine as either $00 (all zeros) if the match is
found, or SFF (all ones) if it is not.

To make the subroutine more generally useful,
we won't pass back the actual address for a found
match, but will instead leave the X register pointing
to the address where the required address can be
found. This has the additional advantage that the X.
register, by stepping byte by byte through the
string, should end up containing this information _
automatically, anyway. a

One final point: our program contains one new
6809 instruction. TST (TeST) has no effect on any
register, but simply sets the flags according to the
current value of the named register.

Table
Search

PPPS ASIS

620 THE HOME COMPUTER ADVANCED COURSE

DATABASE
Here, courtesy of Zilog Inc., we produce the second part of the programmers’ Z80 reference card.

Mnemonic

LG gc on

LD Xk an

LD EY an

LD HL. fpr)

LO da ian)

LD IX tan)

Pi iy fan)

LO inal) BL

LD tanh, dd

LD tani ix

LD inns l¥

LO SP AL
LD SP IX

LD SP iy

PUSH aq

PUSH IX

PUSH IY

POP aq

POP Ix

POP IY

NOTES dd is any of the register pais BU DE. HL SP.
QQ 1S apy of the register pairs AF BC DE HL

(PAIR (PAIR) feter to high order and low order eight bits of the register pair respectively,
ee ARV = A

Flag Notation

eg BU)

Symbolic
Operation

6G — an

ix — 5

Ho- fant)

ee ee

dg: — nt i}

dai — inn)

‘AW — (9p +1)

IAL = (97)

2

iY; = (Pp)

(ppt i) A

Ani

Ins 1) — doy

(on) = Gd,

(on 41) — ky
(7p) = (AL

n+ yy
wo) = LY

Sie ae
oP — IX

Sig Ae

(SF 2) — ag,
(OP — 1) — QgH
SP — SP -2
(SP — 2) — IX,
(SP— 1) — Ixy
oF = SP -2
(SP — 2) — 1Y,
Se
SP - SP -2
QGH — (OF + 1)
Qa, — (SP)
SP — SP 42
IXfq = (SP + 1)
IX, - (SP) -
Sig. Sin.
[Ye = (SP 4 1)
IY, ~ GP)
oP = SP +2

Flags
H PIV

e x @

e x e

e x @

@ x @

e x €

e x e

e x e

e x e

@ x e

@ x e

e x e

* A
* A

@ x «

@ x e

e x e

e x e

e x °

* x e

@ x *

e = flag fot affected 0 = flag fesel 1 = flag set &

16-Bit Load Group

Opcode No.of No.of M No.of TF
76 543 210 Hex Bytes Cycles States Comments

UO dcU oUF 3 3 tC de Par

i. U0 Bu
—f- Oi ve

7 Oe UL 4 a ce 10 a
CO Go oo 21 1 oF

oy

oo foe

7 a 4 4 id
OC 100 00) ee

— fo

O00 10) OG EA 3 5 16
ee PS

eo Se

1 oo ED 4 6 eC
Ui gg) Go

a ES ee

poet So tact

0 1G DD a 5 eu
OO 0 010 A

— fy =

eee FD a 6 20

OU 40) O10 ok
ee Ey ae

ee oS

WO 100 O10 ge 3 5 16
a= Fy oe

Bore ate

7 ok ED 4 6 eu
Ui ddl O11]
ee

pee a eeareee

1 0 ee 4 6 au
OO 100 GG ge

ease: A

ee EY ee

es FD 4 6 au

00 100 010. Be
ES ee

ton Fy aces

11 111 O01 — : 6
11 Ott 10) DR e a 10

1 it) Oo FQ :

11131 FO 2 é Ve
Po OOF FQ Qa Fait

Tt goo 101 1 3 Vi se

01 DE
10 HL

Tih ie ee) 2 4 1S 11 AF

11 100 (01 ES

tr tit tt FID é 4 15

1) 100 101 ES

17 @ao O01 } 3 10

Tt Ott 10) 0) Ss 4 1a

71 100 001)

1) ti) 101 FID < 4 ta

1) 700 001 Et

flag 18 Unknown,
t = flag §s affected accearding fo the result af [he operation.

DESTINATION

PUSH
INSTRUCTIONS

SQURCE

NOTE: The Push & Pop Instructions adjust the SP after every execution.

